2018 Local Solutions: Eastern Climate Preparedness Conference

Community Energy: Planning & Financing Resilient Energy Systems

> Todd Olinsky-Paul May 2, 2018

Who We Are

THE SCHMIDT FAMILY FOUNDATION

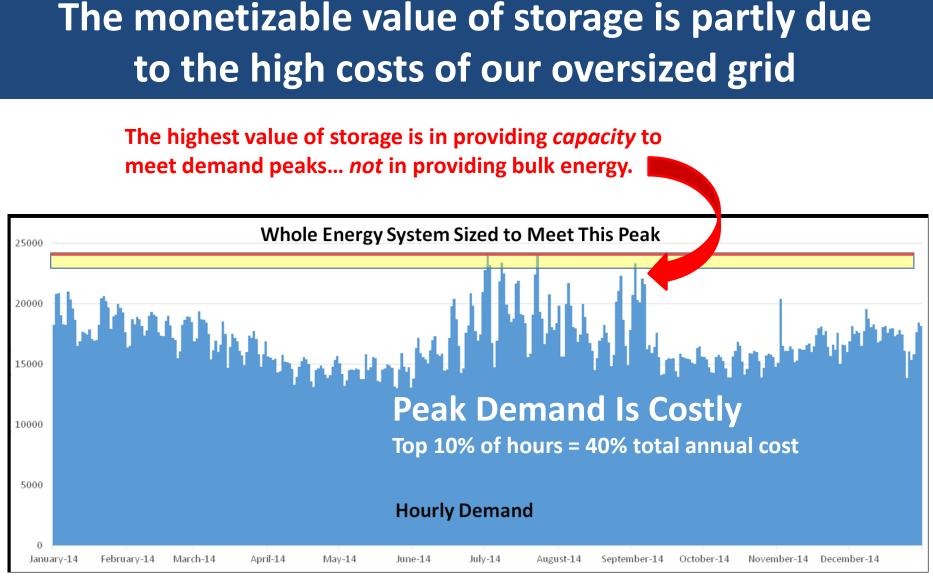
RESILIENT

The Economics of Battery Storage

At current costs... the capital cost to deploy 1,766 MW of storage could be in the range of \$968M - \$1,355M, and the total value of storage over 10 years could be around \$3.4 billion. --State of Charge

Storage offers two kinds of benefits: *monetizable* and *non-monetizable*

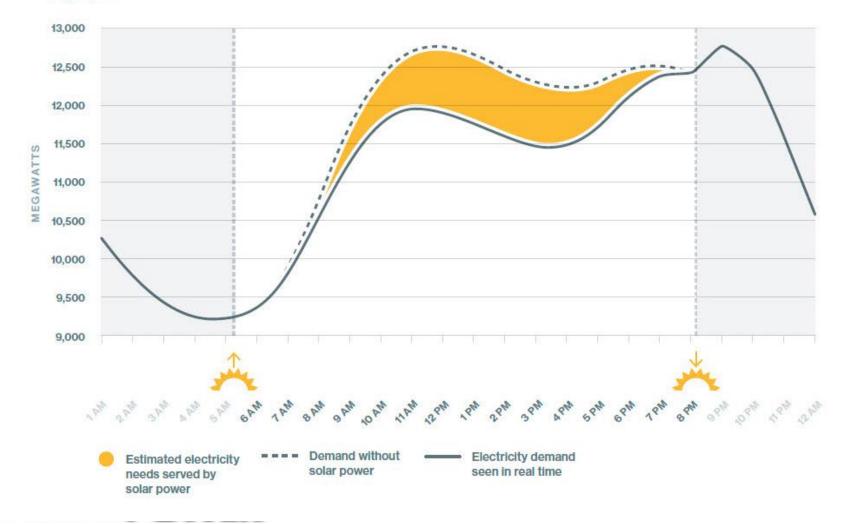
Example:


<u>Monetizable</u>

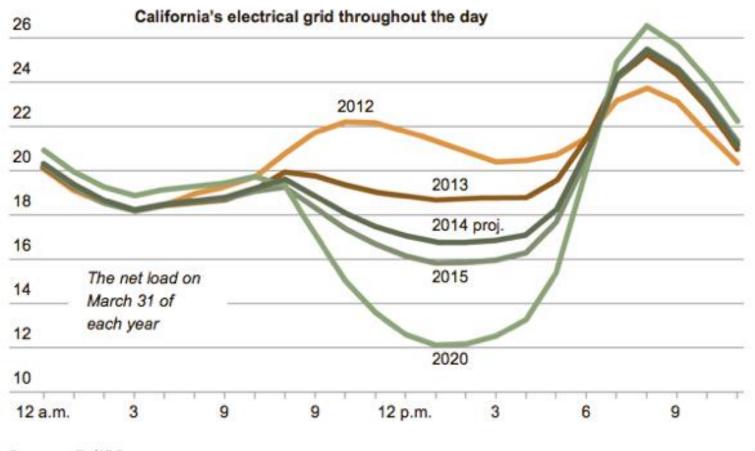
Demand Charge Management

Non-Monetizable

Resiliency



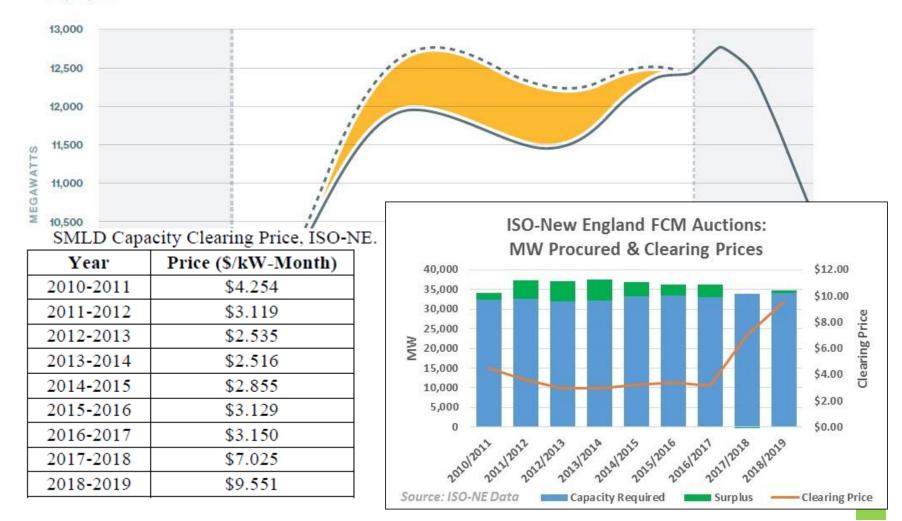
From Massachusetts State of Charge report


ISO-New England: Does this curve look familiar?

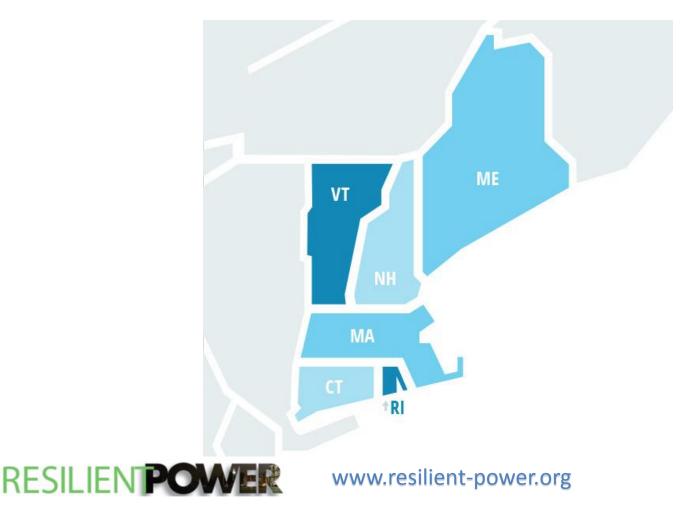
Solar Power's Effect on Regional Electricity Demand May 23, 2015

California "Duck" Curve

28 thousand megawatts



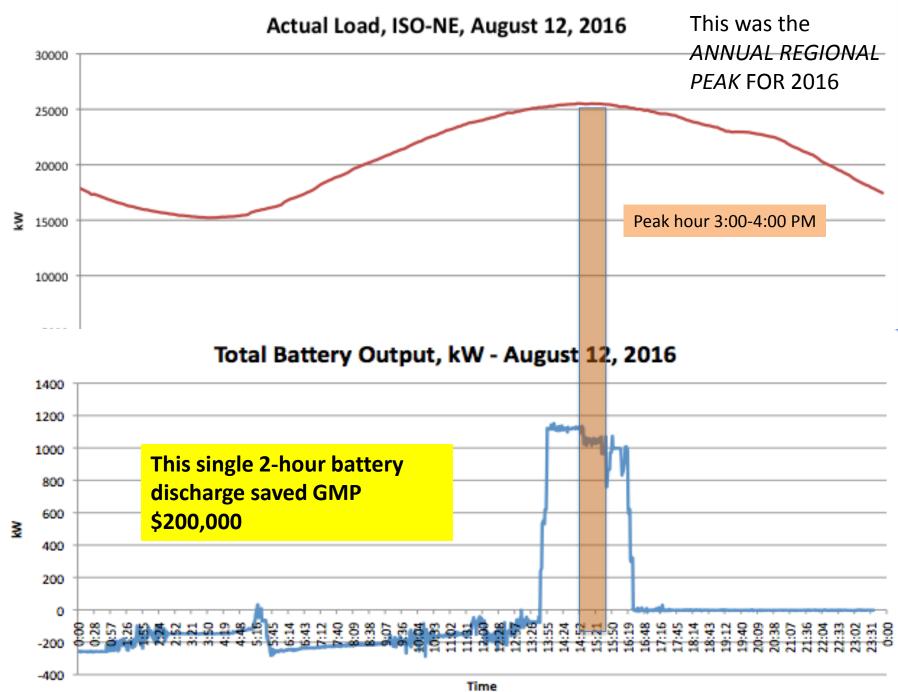
Source: CallSO


ISO-New England: Does this curve look familiar?

Solar Power's Effect on Regional Electricity Demand May 23, 2015

F

ISO New England storage markets: capacity and transmission cost reductions


Vermont: GMP Microgrid, Rutland (Stafford Hill)

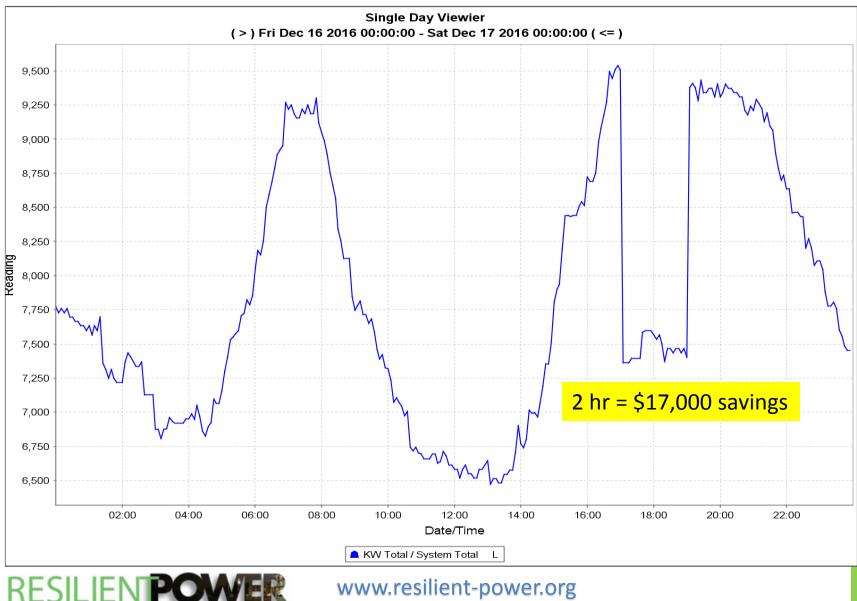
- Grant funding: \$40K VT DPS, \$250K DOE-OE
- Total cost: \$12 M
- Payback < 7 years via utility capacity and transmission cost reductions
- Follow-on projects:
 - 14 LMI high-efficiency modular homes equipped with resilient power solar+storage (rural mobile home replacement project)
 - Burlington Electric Dept solar+storage microgrid at Burlington Airport

- 4 MW batteries (lithium ion and lead acid) + 2 MW PV microgrid
- Sited on closed landfill (brownfield redevelopment)
- Provides resilient power for school (public shelter)
- Project partners: Green Mountain Power, Dynapower, VT DPS, DOE, Sandia, CESA

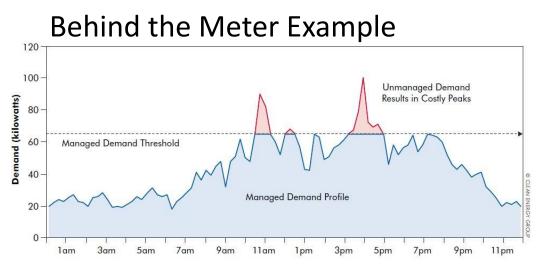
Sterling, MA 2MW/3MWh Solar+Storage Microgrid

Project partners: SMLD, DOER, DOE-OE, SNL, CESA Project funding: State CCERI grant, US DOE grant Project timeline: Groundbreaking in October 2016, commissioning by end of year

Project Summary: 2 MW / 3 mWh lithium ion battery project, connected with 3.4 MW solar PV at utility substation; islanding capability to support municipal emergency facility.


Project Benefits:

- Backup power to support town police station / dispatch center during grid outages;
- Cost savings through reduction of SMLD's capacity and transmission obligations to ISO-NE, plus arbitrage
- Integration of intermittent solar PV


Sterling, MA Monthly Peak Reduction

Sterling, MA Annual Peak Reduction

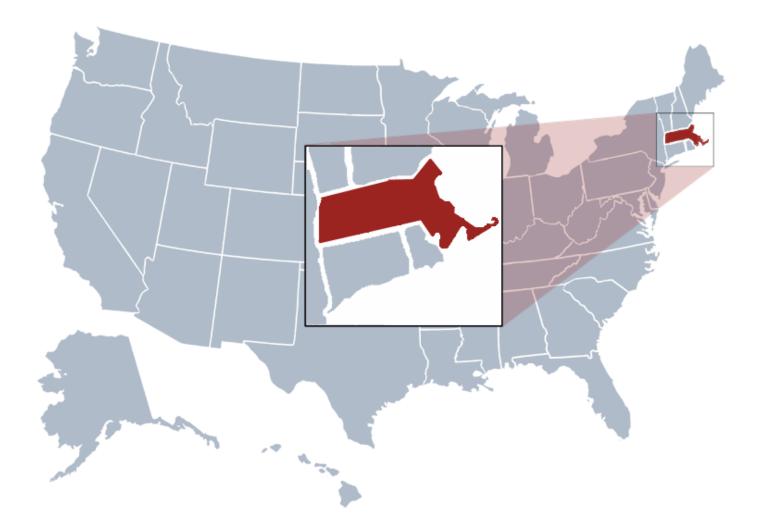
Similar savings are available to C&I customers (behind the meter)

Peak reduced from 100 kW to 65kW = **35 kW** reduction Savings depend on cost of demand

Demand charges @ \$10/kW = **\$4,200 annual savings** Demand charges @ \$20/kW = **\$8,400 annual savings**

Generally, commercial customers paying **\$15/kW or more** in demand charges may be able to install batteries economically for demand charge management (without subsidies).

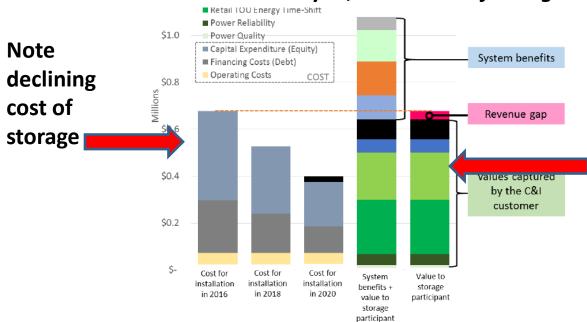
Three city analysis: The economic impact of adding storage BTM


Chicago Project Summary							
System Size	200-kW solar-only	200-kW solar +100-kW/ 50-kWh lithium-ion battery	200-kW solar + 300-kW/ 150-kWh lithium-ion battery				
Initial Cost*	\$493,000	\$606,000	\$832,000				
Payback Period	20+ years	11.8 years	6.2 years				

* Initial project costs refer to year zero net project expenses after federal tax credits and any additional tax credits have been applied.

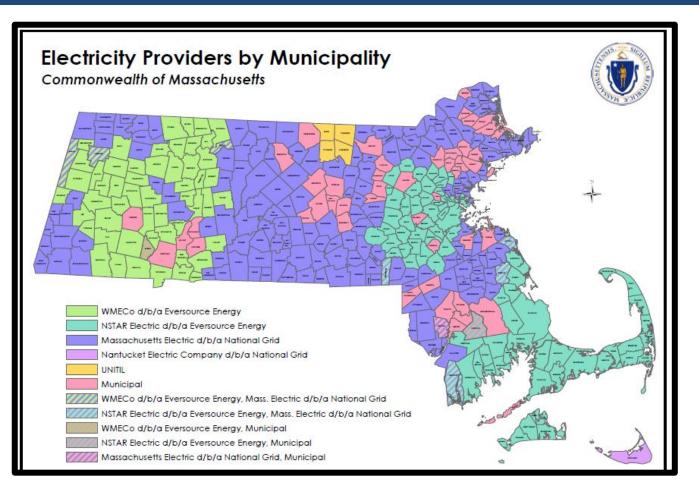
Washington, D.C. Project Summary						
System Size	360-kW solar-only	360-kW solar +100-kW/ 50-kWh lithium-ion battery				
Initial Cost	\$788,000	\$901,000				
Payback Period	3.5 years	3.5 years				

New York City Project Summary						
System Size	30-kW solar-only	30-kW solar + 30-kW/ 60-kWh lead-acid battery				
Initial Cost	\$58,000	\$128,000				
Payback Period	4.3 years	14.2 years				


Energy Storage for Demand Charge Management (BTM) in Massachusetts

Demand charge rates in Massachusetts

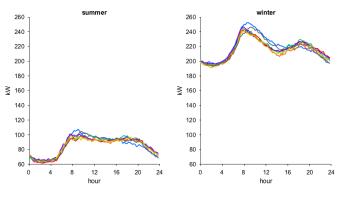
MA demand charges as of July, 2016 (pre-Eversource rate case)					
Utility / Demand \$/KW	Commercial (non-summer / summer)	Industrial (non-summer / summer)			
National Grid	\$6.00	\$3.92			
Eversource NStar	\$17.37 / \$41.25	\$19.15 / \$25.12			
Eversource WMECO	\$13.36	\$10.74			
Unitil	\$9.58	\$7.88			
04					


BTM economic analysis, from State of Charge report

In this analysis, the value the customer realizes from demand charge management (light green bar) is based on a demand charge rate of \$7.84/kW.

Scale of opportunity in MA

More than 70,000 commercial customers in Massachusetts *currently* pay demand charges that would make energy storage economical (>\$15/kW).



(Light blue areas are highest demand charges)

Edwards D. Hassan Apartments

- Boston Housing Authority affordable senior housing facility in Hyde Park, MA
- 100 apartments
- Electric heating
- Common areas include kitchen, four laundry facilities, common room, 2 elevators
- System modeled:
 - Solar: 150 kW DC (cost: \$375,000)
 - Storage: 30 kW/45 kWh Li-Ion battery (cost: \$88,604)
- Total capital cost: \$463,604

Seasonal load profile Electric heat = high winter peak loads

Hassan Apartments Baseline Utility Bill Analysis is on common loads only – not individual apartment loads

Baseline utility bill

		senne armey ion			
ENERGY				baseline (T2)	
		Usage, kWh	Cost, \$/kWh	Total Cost, \$	
Peak	Summer	72,196	\$0.0925	\$6,678	
	Winter	489,413	\$0.0925	\$45,271	
Part-peak	Summer	-	\$0.0000	\$0	
	Winter	-	\$0.0000	\$0	
Off-peak	Summer	176,967	\$0.0925	\$16,369	
	Winter	773,548	\$0.0925	\$71,553	4
TOTAL, /yr		1,512,124		\$139,871	
					Energy
DEMAND					211018)
		Avg Peak, kW	Cost, \$/kW	Total Cost, \$	
Max	Summer	153	\$29.80	\$18,221	
	Winter	352	\$21.35	\$60,096	
Peak	Summer	0	\$0.00	\$0	
	Winter	0	\$0.00	\$0	
Part-Peak	Summer	0	\$0.00	\$0	
	Winter	0	\$0.00	\$0	
TOTAL, /yr				\$78,317	
					🔹 Demai
Meter Charge, \$/yr				\$2,000	
TOTAL, \$/yr				\$220,188	

Hassan Apartments payback comparison

	_	_	_		_	Year 1 sav	ings		
	Size	Capital cost	Federal ITC	Depreciation	Net cost	Energy charge	Deman charge		
Solar system	150 kW PV	\$375,000	\$112,500	\$144,713	\$117,787	\$18,204	\$5,37	4 5.7 years]
Energy Storage system	30 kW/45 kWh battery	\$88,604	\$26,581	\$34,192	\$27,831	\$0	\$7,64	5 4.4 years	
Combined system	150 kW PV + 30 kW/45 kWh battery	\$463,604	\$139,081	\$178,905	\$145,618	\$18,204	\$13,01	9 5.3 years	

Solar+Storage payback = 5.3 years

What the analysis includes:

- Federal ITC
- Federal accelerated depreciation

What it doesn't include:

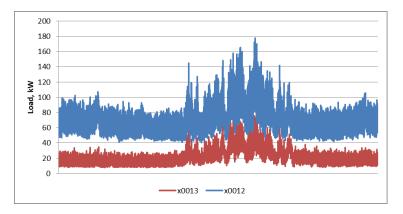
- SMART solar incentives (with storage adder)
- Income from Alternative Energy Certificates
- Other market programs (demand response)

Jewish Community Housing for the Elderly

Coleman House:

146-unit affordable senior housing facility Newton, MA

System modeled: 116 kW solar 55 kW/226 kWh Li-Ion Battery


Demand charge:

\$28.92 / kW June – September \$20.47 / kW October – May

Modeling:

System modeled over 25 years, with battery replacement at 10 years IRR > 18% Assumes SMART incentive and ITC

Annual load profile (two meters)

Payback reached in year 5

Boston Medical Center

Baseline Capacity Charges

Eversource T&D charge:

Summer = \$24.82/kW Winter = \$18.86/kW

ISO-NE Capacity Cost (icap) charge: \$9.96/kW-month

Result: Hospital is currently paying annual demand costs of \$1,247,000

1,060 kW / 2,120 kWh battery to be located on the roof of the Yawkey Ambulatory Care Center, next to existing CHP

> Project Installed Cost: \$1,500,000

MassCEC Grant: \$402,500

Project Economics:

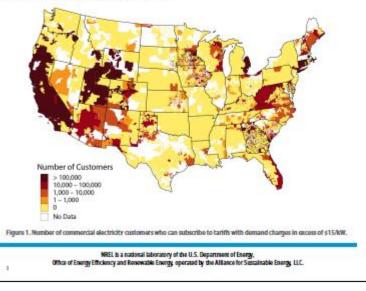
Annual Savings: \$200,000

Simple Payback: 7.5 years (without grant) 5.5 years (with grant)*

Note: This installation is costly due to rooftop location, and high hospital load factor. Ground installation, or a lower load factor, would result in lower installed cost and lower simple payback.

First National Survey of Demand Charge Rates

Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges


- Based on a survey of more than 10,000 utility tariffs
- Applies to approximately 70% of commercial buildings in the United States
- Result: Nearly 5 million commercial
 customers may be paying more than

Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

SUMMARY

This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States—a key predictor of the financial performance of behind-the-suster battery storage systems. Notably, it is estimated that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of \$15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States.¹ While the economic visibility of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics.¹ Increasing use of demand charges in utility tariffs and saticipated future declines in storage costs may also serve to unlock additional markets and strengthen existing ones.

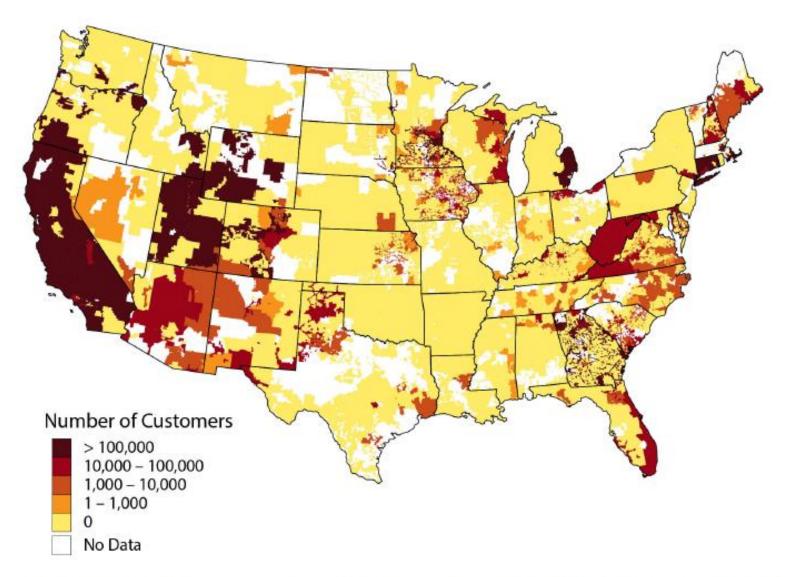
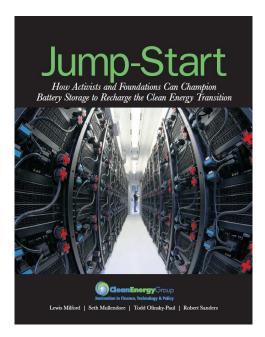


Figure 1. Number of commercial electricity customers who can subscribe to tariffs with demand charges in excess of \$15/kW.

Darker areas on map = more customers paying high demand charges


New England Demand Charge Rates

- Connecticut (Eversource)
 - Small General Electric Service = \$20.82/kW
 - Intermediate General Electric Service = \$17.34/kW
 - Large Church and School = \$18.17/kW
- New Hampshire (Eversource)
 - Small Commercial = \$15.25/kW
 - Medium Commerical = \$14.10/kW
- Maine (Central Maine Power)
 - Small General Service = \$12.18-\$13.57/kW
 - Intermediate General Service = \$13.95/kW
 - Large General Service = \$15.38-\$15.71/kW
- Vermont (Green Mountain Power)
 - Small General Service = \$14.30
 - Large General Service = \$14.67
- o Rhode Island (National Grid)
 - Small Commercial = \$9.17/kW
 - Medium Commercial = \$8.41/kW
 - Large Commercial = \$7.03/kW

Generally, energy storage for demand charge management is economical (without subsidies) if the customer is paying <u>at least</u> <u>\$15/kW for demand charges</u>.

Thank You

Please check out our new report –*Jump-Start: How Activists and Foundations Can Champion Battery Storage to Recharge the Clean Energy Transition*

bit.ly/CEG-JumpStart

Todd Olinsky-Paul

Todd@cleanegroup.org

