Local Solutions Northeast Climate Change Preparedness Conference

Piscataquog River Watershed Stream Crossing Vulnerability Assessment Project

Southern New Hampshire Planning Commission & Trout Unlimited

May 19, 2014

Location: Radisson Hotel, Manchester NH Presenter: Gabe Bolin, PE, Trout Unlimited

Project Partners

Piscataquog River Local Advisory Committee

Presentation Overview

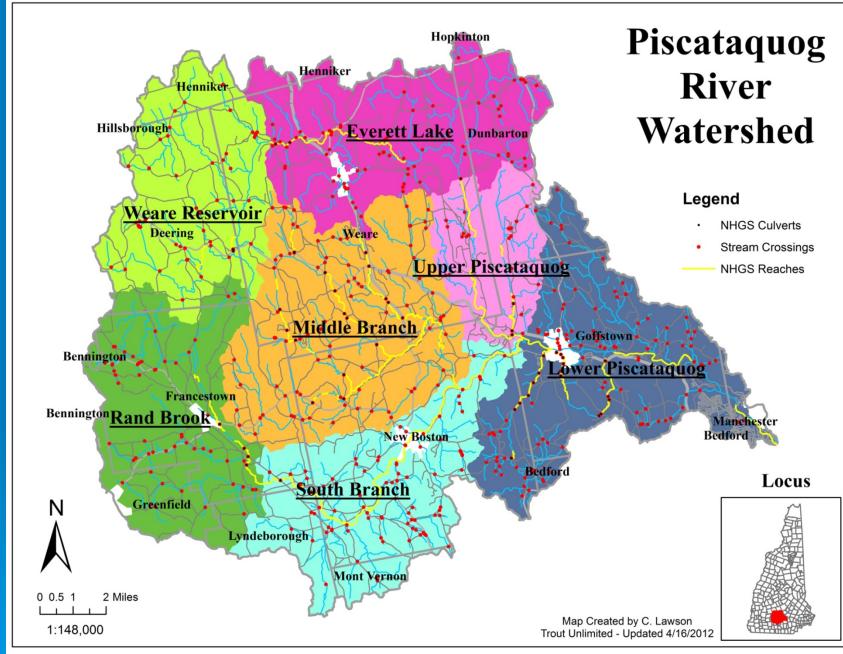
- > Stream crossings what's the problem?
- > The Piscataquog River Watershed
- > Project Background (Phase I)
- ▷ Phase II
 - Modeling GIS and Excel
 - The model as an assessment and screening tool
 - Developing restoration strategies / prioritization tools
 - Assisting communities

We need to prepare for streams changing...

dramatically over time!

Photos courtesy of Dan Cenderelli, USFS

A Well Designed Crossing



Large size suitable for handling most flood flows Open-bottom arch considered optimum for most conditions

Openness ratio needs to be greater than 0.5 %

Bankfull width greater than 1.2x stream's active channel Water depth and velocity match up and down stream

Natural substrates create good conditions for stream biota

ROUT UNLIMITED

Phase I – AOP Assessment Goals

- Spatially identify in-stream <u>Connectivity</u> barriers
- Complete a watershed wide <u>Stream Crossing Assessment</u>
- Run Field Data through NH's AOP & Geomorphic Models
- Prioritize Restoration Efforts to Improve Aquatic Habitat
- Strategize with communities to replace instream barriers

Water	Watershed Size									
Sq Miles	Acres									
217	138,880									

Crossings by Catchment:

Lower Piscataquog River		128
Middle Branch Piscataquo	g Riveı	99
South Branch Catchment		93
Everett Lake Catchment		74
Rand Brook Catchment		58
Weare Reservoir		48
Upper Piscataquog River		27
	Total	527

UNLIMITED

Post Field Work Visited 488

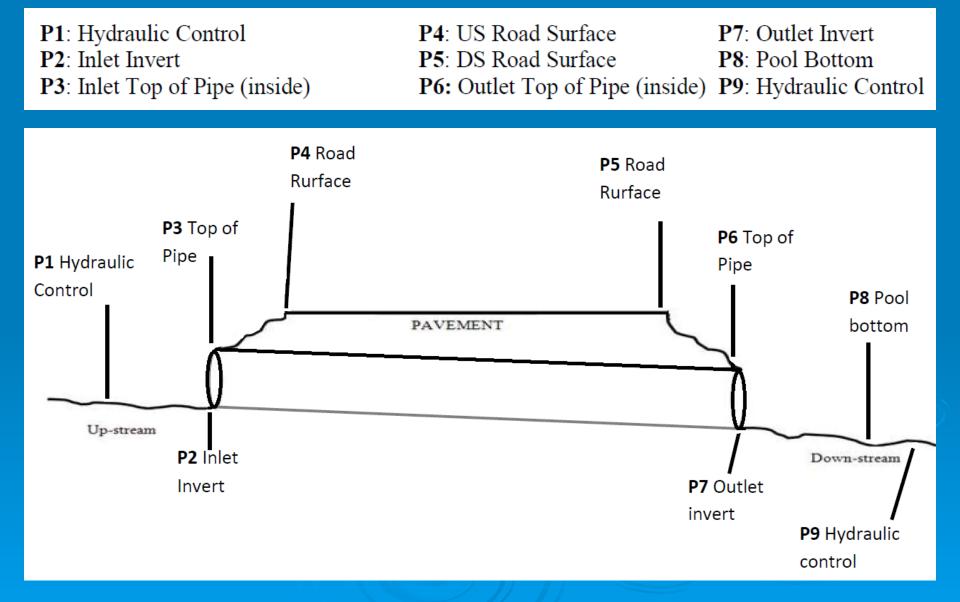
Assessed 418

Crossing by Catchment:

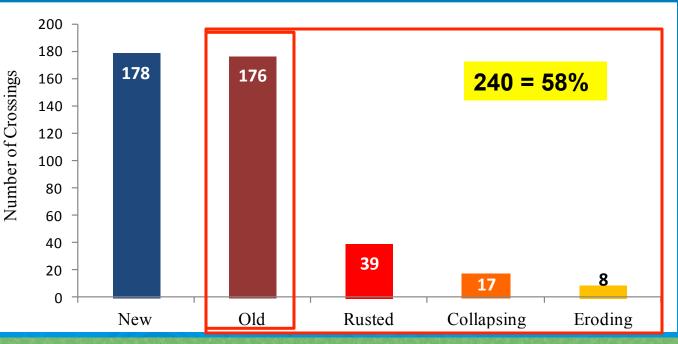
Lower Piscataquog	92	22%
South Branch	78	19%
Middle Branch	73	17%
Everett Lake	62	15%
Rand Brook	48	11%
Weare Reservior	43	10%
Upper Piscataquog	22	5%
Ć	418	100%

Volunteer help from local and regional:

800 Hours 35 Field Days


- 15 TU Chapter Members
- 5 Community Residents
- 5 Graduate Students

Additional Elevation Data


Piscataquog River AOP Results

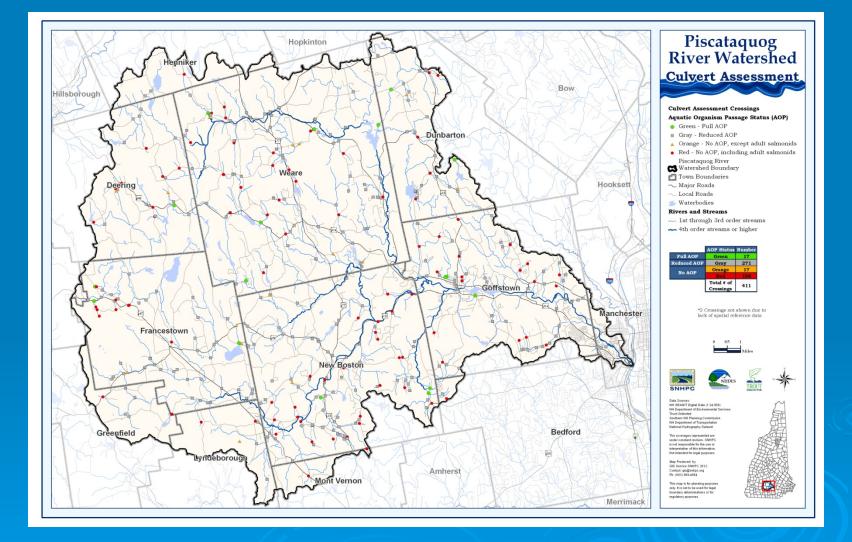
Туре	# of Crossings	% of Total
Arch	27	7%
Bridge	27	7%
Culvert	358	87%
	412	100%

Culvert Types

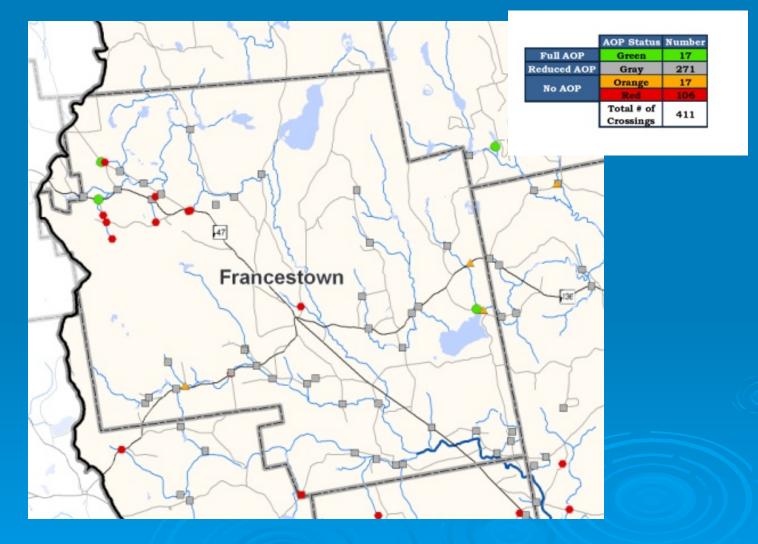
ROUT UNLIMITED

<u>% Bankfull</u> <u>Width</u>	<u># of</u> Crossings	<u>% of Total</u>
< 25	178	57%
26 to 50	98	31%
51 to 75	29	9%
> 100	7	2%
	312	100%

Crossing Size as % of Bankfull Width

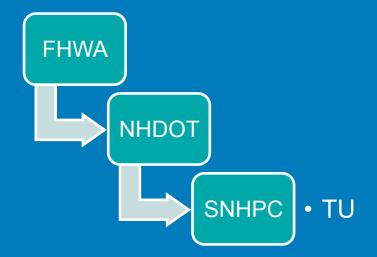

		Condition	# of Crossings	<u>% of Total</u>
		At Grade	236	48%
Outlet	24.0/	Free Fall	126	26%
Condition	34 %	Cascade	37	8%
		Backwatered	13	3%
			412	85%

AOP Model Output – Francestown


Town	Road Name	Stream Name	Crossing ID	Structure Type	Latitude	Longitude	8	Structure Width (ft)	Crossing Slope	Culvert Invert Type		Crossing Length (ft)	BANKFUL %	AOP Status
FRANCESTOWN	2nd NH Turnpike	Dinsmore Brook	RB_DIBK_08	Culvert	43.0194	-71.8674	New	3	5	At Grade	0	32.6	28.6	GREEN
FRANCESTOWN	2nd NH Turnpike	Dinsmore Brook	RB_DIBK_10	Culvert	43.01745	-71.86208	Old	1.25	1	Backwatered	0	40		GRAY
FRANCESTOWN	2nd NH Turnpike	Dinsmore Brook	RB_DIBK_11	Culvert	43.01498	-71.85546	Rusted	5	0.2	At Grade	0	31	39.7	GRAY
FRANCESTOWN	2nd NH Turnpike	Dinsmore Brook	RB_DIBK_15	Arch	43.01271	-71.85046	collapsing	1.2	1.5	At Grade	0	30.5	8.2	GRAY
FRANCESTOWN	2nd NH Turnpike	Piscataquog	SB_PSCR_01	Culvert	43.14875	-71.35823	Old	2	0.2	Cascade	0.25	49	53.2	GRAY
FRANCESTOWN	Abbott Ln	Dinsmore Brook	RB_DIBK_14	Culvert	43.01227	-71.85207	New	3	2.5	Free Fall	2	31	47.7	RED
FRANCESTOWN	Avery Rd	Piscataquog	SB_PSCR_03	Culvert	42.96376	-71.76141	Old	3	1.3	At Grade	0	30.8		GRAY
FRANCESTOWN	Back Mtn Rd	Dinsmore Brook	RB_DIBK_04	Culvert	43.00828	-71.86678	New	4	2.5	Free Fall	1.5	40	33.4	RED
FRANCESTOWN	Bennington Rd	Dinsmore Brook	RB_DIBK_05	Culvert	43.01162	-71.86816	New	4	1	Backwatered	0	64	29.4	GREEN
FRANCESTOWN	Bennington Rd	Collins Brook	RB_COBK_03	Culvert	43.00941	-71.84214	New	1.5	2.5	Free Fall	0.5	49	19.6	RED
FRANCESTOWN	Bennington Rd	Dinsmore brook	RB_DIBK_06	Culvert	43.01221	-71.87244	New	5	0.7	At Grade	0	49	34.8	GRAY
FRANCESTOWN	Bennington Rd	Dinsmore Brook	RB_DIBK_13	Culvert	43.01162	-71.85306	Eroding	4	1.5	At Grade	0	34	48.5	GRAY
FRANCESTOWN	bible hill rd	Whiting Brook	MB_WTBK_02	Culvert	43.00277	-71.79145	Old	3	4	Cascade	0.7	47.7	21.5	GRAY
FRANCESTOWN	bible hill rd ext	Whiting Brook	MB_WTBK_01	Culvert	43.01365	-71.79518	Eroding	2	5	At Grade	0	23.7		GRAY
FRANCESTOWN	Birdsall	Piscataquog	RB_SBPR_17	Culvert	42.97351	-71.80918	Rusted	3	3	At Grade	0	32		GRAY
FRANCESTOWN	Birdsall	Piscataquog	RB_SBPR_18	Culvert	42.97461	-71.80673	Old	1.3	0.8	At Grade	0	30	4.3	GRAY
FRANCESTOWN	Cressey Hill Rd	Rand Brook	RB_RBBK_14	Bridge	42.95793	-71.78953	New	30	0.4	At Grade	0	15	76.9	GRAY
FRANCESTOWN	Dennison Pond Rd	Whiting Brook	MB_WTBK_08	Culvert	43.00211	-71.76964	Old	3	0.5	At Grade	0	20.8	16.2	GRAY
FRANCESTOWN	Dodge Hill Rd	Piscataquog	SB_PSCR_04	Culvert	42.96848	-71.7368	Old	2.5	3.6	Cascade	0.4	28.7	40.5	GRAY
FRANCESTOWN	Dodge Rd	piscataquog	SB_PSCR_05	Culvert	42.96361	-71.75111	Old	4	0.8	At Grade	0	38.5		GRAY
FRANCESTOWN	Farrington	Rand Brook	RB_RBBK_03	Bridge	42.9706	-71.85379	Old	3.5	1	At Grade	0	16	19.9	GRAY
FRANCESTOWN	Ferson	Whiting Brook	MB_WTBK_03	Arch	42.99161	-71.7936	Old	1.4	7	At Grade	0	26.8	6.0	GRAY
FRANCESTOWN	Fisher Hill	Collins Brook	RB_COBK_04	Culvert	43.01054	-71.83504	New	1.5	2	At Grade	0	21	13.8	GRAY
FRANCESTOWN	greenfield rd	rand brook	RB_RBBK_04	Arch	42.97235	-71.84607	New	8	0.2	At Grade	0	30	33.3	GRAY
FRANCESTOWN	greenfield rd	Piscataquog	RB_SBPR_15	Bridge	42.97724	-71.82342	New	18	0	At Grade	0	37		GRAY
FRANCESTOWN	greenfield road	Piscataquog	RB_SBPR_12	Bridge	42.97572	-71.83058	New	9.2	7	At Grade	0	37.5	46.4	GRAY
FRANCESTOWN	Juniper Hill	Piscataquog	RB_SBPR_16	Culvert	42.97454	-71.81889	New	12.5	2.5	At Grade	0	27	59.2	GRAY

Stream Crossing AOP Ratings

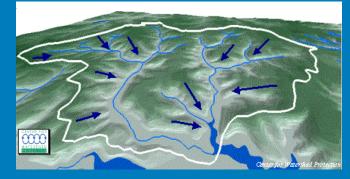
Stream Crossing AOP Ratings – Francestown



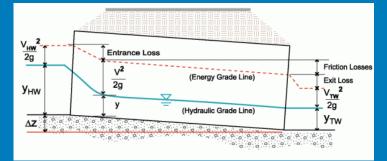
Phase II

Funding

• \$70,000 Research Grant

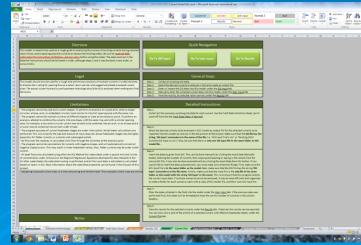

Project Team

- **<u>SNHPC</u>** Jack Munn
- **Trout Unlimited** Colin Lawson, Gabe Bolin
- Antioch University Apollinaire William, Michael Simpson
- University of New Hampshire Joel Ballestero, Tom Ballestero
- **<u>Review Committee</u>** NHDOT, NHGS, USFWS, USGS, UMASS



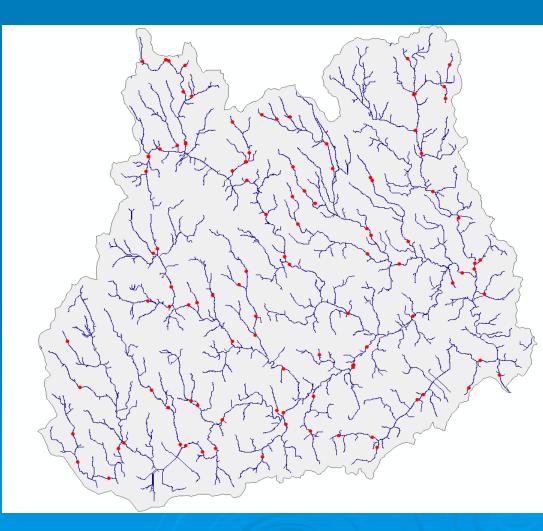
Modeling

> Hydrology: (SCS, Regression Eqns.)



> Hydraulics: (HDS-5)

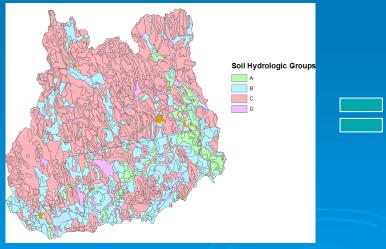
T UNLIMITED


GIS Data Requirements

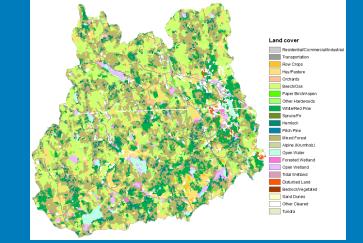
- > Elevation data (DEM)
- Watershed boundaries
- Stream data, road data, land cover
- Soil data
- > Wetlands and ponds
- > Precipitation (2, 10, 25, 50, 100 and mean April precip.)

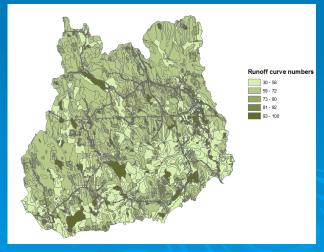
Data sources: NH GRANIT, Cornell NRCC, PRISM

GIS: Middle Branch Sub-Watershed


Crossings in red

GIS: Watershed Hydrology


Ponds, Lakes and Wetlands

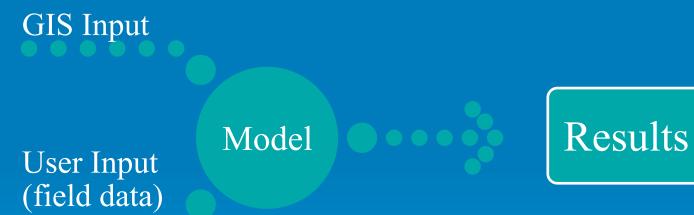

 $\triangleleft \vdash$

TROUT UNLIMITED

Hydrologic Soil Groups

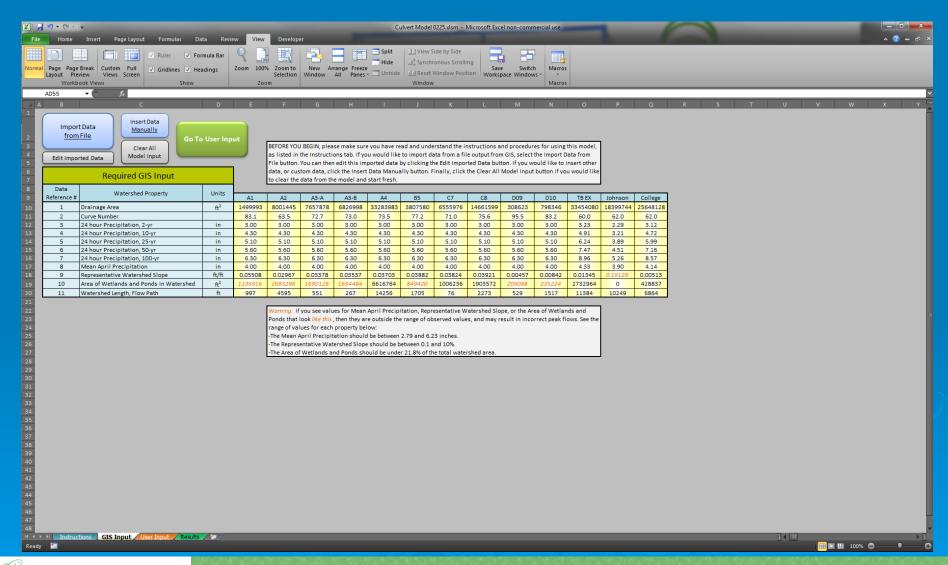
Land Cover

Curve Number

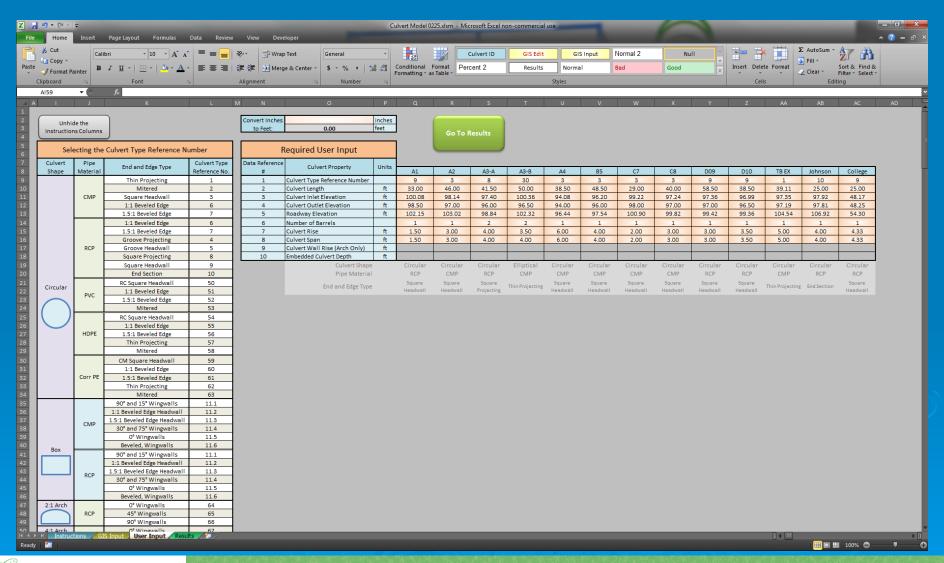

20

GIS: Hydrologic Output

	А	В	С	D	E	F	G	Н	I.	J	К	L	М	N	뒤
1	HydroID	Latitude	Longitude	Perimeter(ft)	Drainage (ft2)	Ave_CN	Ave_Prec_2yr	Ave_Prec_10yr	Ave_Prec_25yr	Ave_Prec_50yr_5	Ave_Prec_100yr	Prec_April_in	Slope_avg.(ft/ft)	Ponds_wetl.(ft2)	
2	4022	43.05467	-71.7147	32250.59167	24090051.82	81.7143	2.8777	4.2727	5.3582	6.3627	7.5623	4.01574	0.161557004	144400.7843	
3	4024	43.05264	-71.7033	10813.62667	3150853.073	80.1667	2.88	4.278	5.367	6.378	7.58	3.97637	0.144746006	0	
4	4026	43.01364	-71.745	66902.75333	105207880.2	70.4667	2.8965	4.3289	5.4444	6.4827	7.7224	4.09448	0.137776002	7032352.719	
5	4028	43.01511	-71.7381	40557.66167	26211825.35	76.3333	2.8954	4.3247	5.4407	6.4793	7.716	4.09448	0.13144201	1332222.869	
6	4030	42.99953	-71.7575	24041.94667	11885268.59	66.3636	2.9	4.3413	5.4687	6.5163	7.7662	4.09448	0.169910997	1138983.347	
7	4032	43.04041	-71.7044	54146.87333	61115710.41	80.2308	2.88	4.2814	5.3718		7.5876	3.97637	0.136380002	3496962.965	
8	4034	43.04804	-71.727	7624.656667	1408753.432	80.6667	2.8838	4.2938	5.8913	6.4075	7.6213	4.01574	0.095403902	0	
9	4036	43.03882	-71.7031	57047.13	64077732.96	78.8571	2.88	4.282	5.873	6.3843	7.5902	3.97637	0.135685995	3496962.965	
10	4038	42.99117	-71.7129	10597.09167	2973679.817	76.3333	2.9033	4.35	5.48	6.5367	7.79	4.05511	0.110049002	293440.1394	
11	4040	43.02487	-71.6688	13083.96333	4621584.854	75	2.88	4.2933	5.4	6.4233	7.6467	3.937	0.145396009	368830.8283	
12	4042	42.98818	-71.7795	49120.63667	36673464.85	76.8889	2.913	4.3665	5.5029	6.5619	7.826	4.17322	0.123085	2998406.167	
13	4044	42.98945	-71.7779	73569.40667	100750724.2	76.8889	2.9074	4.355	5.487	6.5404	7.7966	4.17322	0.165482998	4861723.768	
14	4046	42.99491	-71.7482	97631.03833	203326548.2	71	2.9068	4.3549	5.4882	6.5423	7.7994	4.09448	0.111238003	22301400.53	
15	4048	43.07925	-71.7594	8274.261667	1598111.387	74.2857	2.876	4.2656	5.3411	6.3411	7.5311	4.09448	0.127268001	260330.2353	
16	4050	42.98615	-71.736	15761.12333	5818526.905	68.375	2.91	4.365	5.5	6.56	7.825	4.09448	0.138163	211875.5167	
17	4052	43.04382	-71.735	89041.81667	135173130.7	69.5714	2.8809	4.284	5.3788	6.386	7.5931	4.01574	0.165509	8296897.607	
18	4054	43.07293	-71.76	33864.76167	10680490.44	77.5	2.8743	4.2646	5.3404	6.3404	7.5325	4.09448	0.145501003	748366.7892	
19	4056	43.04942	-71.7233	17093.14167	5189723.301	78.5	2.8813	4.288	5.3827	6.395	7.6067	4.01574	0.152683005	56011.13472	
20	4058	42.99386	-71.7289	35702.02833	25843485.81	70.6	2.9085	4.3615	5.4954	6,5531	7.8146	4.09448	0.127689004	1778753.543	
21	4060	43.00749	-71.7086	147086.32	459957554.4	72.1667	2.902	4.3441	5.4712	65197	7.7697	4.01574	0.132220998	44335941.34	
22	4062	43.03446	-71.7042	39474.98667	25284937.97	83	2.8871	4.301	5.4033	6.4257	7.6443	3.97637	0.125624999	2382234.92	
23	4064	43.04151	-71.7253	16929.1	5998800.155	78.2	2.8858	4.2975	5.3967	58	7.6317	4.01574	0.073401697	302540.7742	
24	4066	43.02031	-71.7099	136010.2267	202342859.9	69	2.8832	4.2897	5.3835	6. 996	7.6109	3.97637	0.130594999	<u>1180701</u> 1.93	
25	4068	42.98495	-71.7919	30879.20333	18046097.24	75	2.91	4.3625	5.4922	6.5		NDCC		7854	
26	4070	43.04643	-71.7201	45.93166667	96.87480627	70	2.89	4.3	5.4		Cornell	NRU	J Data	0	
27	4072	42.99843	-71.7556	26266.35167	15338521.75	67.2308	2.9013	4.3438	5.4723	6.5 🖌	Extrom	o Dro	ainitatid	891	
28	4074	43.08036	-71.7644	17801.80167	6397956.649	83.8	2.8737	4.2637	5.3389	6.3	Extrem	e Pre	cipitatio	DN IN 1663	
29	4076	43.02225	-71.7584	63228.22	81739527.84	78.3333	2.8962	4.3276	5.4416	6.4	IV and			9.61	
30	4078	43.02276	-71.7558	10813.62667	2772772.232	84.8333	2.898	4.333	5.452	6	VY and			.486	
31	4080	43.00199	-71.7696	31889.7	13871815.66	75.2	2.9025	4.345	5.47	0.52	1.11	4.17322	0.117015007	1987300.243	
32	4082	43.00706	-71.7296	90439.45167	160531381.4	71.8125	2.8968	4.3293	5.4462	6.4856	7.7259	4.01574	0.130516008	15422685.79	
33	4084	43.07946	-71.6792	6961.928333	1638615.82	66.3333	2.8617	4.2417	5.3083	6.2933	7.47	3.937	0.0830779	120.0414578	
34	4086	43.00259	-71.6734	7217.833333	963258.4901	68.25	2.89	4.3133	5.4333	6.4633	7.7033	3.97637	0.099493399	86961.72812	
35	4088	43.05625	-71.7411	21062.95	13502647.3	75.6667	2.88	4.2857	5.3773	6.3911	7.6014	4.09448	0.187849	528740.3689	
36	4090			20301.79667	9624813.389	74.25	2.88	4.2835	5.3735	6.3841	7.5924		0.197246	137869.9856	
		eet1 / She	et2 / Shee										■□□□ 100% ()		_
Read	1y											E	I 🗉 🖽 100% 😑	+	1.1

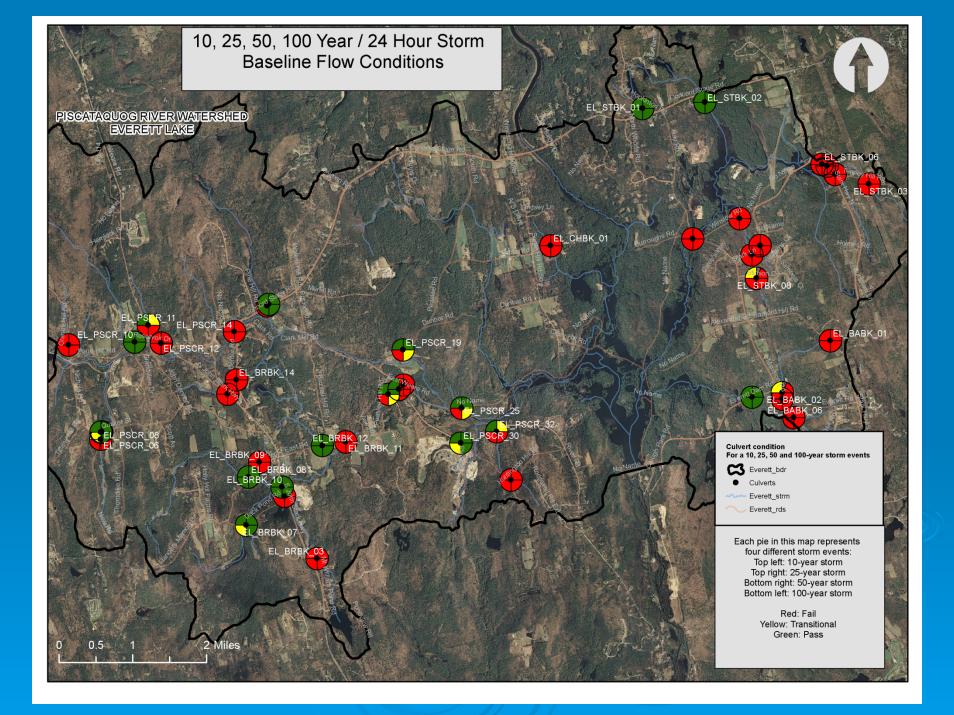

TROUT UNLIMITED

Excel Model: Inputs and Results


Excel Model: GIS Input

23

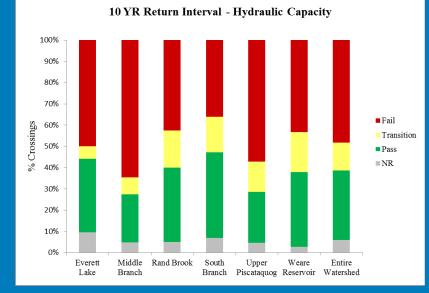
Excel Model: User Input


TROUT UNLIMITED

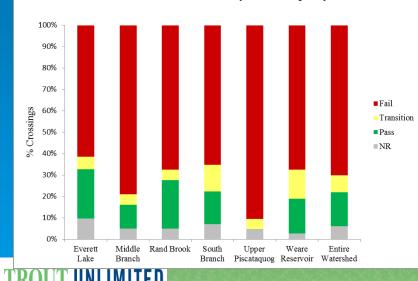
Excel Model: Results

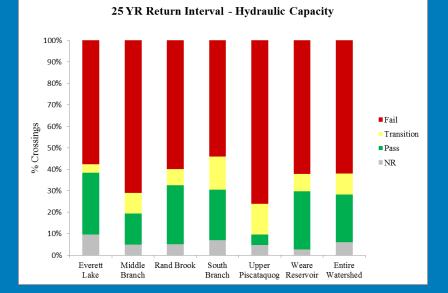
	Select Return Period:	10-yr	•		Go To II	ser Input										
	Results						J									
	Attribute	Symbol	Unit	A1	A2	A3-A	A3-B	A4	B5	C7	C8	D09	D10	TB EX	Johnson	College
s	Calculated Watershed Peak Flow, 10-yr	Q,	cfs	78.64	50.11	248.72	284.54	56.65	109.11	332.81	338.60	21.74	22.83	103.26	66.59	82.95
ertie	Culvert Shape			Circular	Circular	Circular	Elliptical	Circular	Circular	Circular						
Properties	Number of Barrels	Nb		1	1	2	2	1	1	1	1	1	1	1	1	1
2	Culvert Span	D _{full}	ft	1.50	3.00	4.00	4.00	6.00	4.00	2.00	3.00	3.00	3.50	5.00	3.00	4.33
Crossing	Culvert Rise	В	ft	1.50	3.00	4.00	3.50	6.00	4.00	2.00	3.00	3.00	3.50	5.00	3.00	4.33
ပ်	Total Flowable Area	A _{total}	ft ²	1.77	7.07	25.13	21.99	28.27	12.57	3.14	7.07	7.07	9.62	19.63	7.07	14.75
Existing (Culvert Slope	Sculv	ft/ft	0.0479	0.0248	0.0337	0.0772	0.0021	0.0041	0.0421	0.0060	0.0062	0.0127	0.0041	0.0044	-0.0032
Ē	Culvert Rating, 10-yr			Fail	Fail	Fail	Fail	Pass	Fail	Fail	Fail	Pass	Pass	Transitional	Fail	Transitional
- ric ties	Estimated Geomorphic Bankfull Width	W _{bir}	ft	2.99	6.77	6.63	6.26	13.60	4.71	6.14	9.11	1.38	2.19	13.63	10.18	11.97
Geo- morphic Properties	Estimated Geomorphic Bankfull Depth	Dekr	ft	0.60	0.93	0.92	0.89	1.36	0.76	0.88	1.09	0.39	0.51	1.36	1.16	1.27
- ē S	Estimated Minimum Geomorphic Crossing Width	Wereas	ft	5.58	10.12	9.95	9.52	18.32	7.65	9.37	12.93	3.65	4.63	18.36	14.21	16.36
	Proposed Number of Barrels, 10-yr, Box	Neire		2	1	3	3	1	1	3	3	2	2	1	3	1
Proposed Rectangular Culvert	Proposed Culvert Span, 10-yr, Box	Beire	ft	5.00	4.00	6.00	8.00	4.00	8.00	8.00	8.00	4.00	4.00	8.00	3.00	6.00
Cut to p	Proposed Culvert Rise, 10-yr, Box	D _{circ}	ft	2.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	1.00	1.00	3.00	2.00	3.00
	Proposed Total Culvert Area, 10-yr, Box	A _{pro, circ}	ft	20.00	12.00	54.00	72.00	12.00	24.00	72.00	72.00	8.00	8.00	24.00	18.00	18.00
25% ed r t	Proposed Number of Barrels, 10-yr, Circ	Ncirc		3	3	2	1	3	3	3	3	1	1	3	3	3
oosed 2 nbedde Culvert Culvert	Proposed Culvert Diameter, 10-yr, Circ	Beire	ft	3.00	2.50	5.00	7.00	2.50	3.00	5.00	5.00	2.50	2.50	3.00	2.50	3.00
posed 2 mbedde Circular Culvert	Proposed Culvert Rise, 10-yr, Circ	D _{circ}	ft	2.25	1.88	3.75	5.25	1.88	2.25	3.75	3.75	1.88	1.88	2.25	1.88	2.25
ош	Proposed Total Culvert Area, 10-yr, Circ	A _{pro, circ}	ft	17.06	11.85	31.59	30.96	11.85	17.06	47.39	47.39	3.95	3.95	17.06	11.85	17.06

Warning: If you get a value for the culvert slope that looks like this, then the culvert is relatively flat, and may be under outlet control, which would result in larger effective headwater depths.

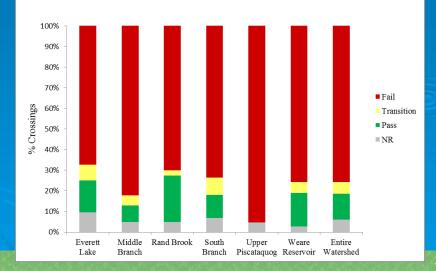


Tabular Results


Stream Name	Crossing ID	Structure Type	Crossing Condition	Structure Width (ft)	Crossing Slope	Culvert Invert Type	Culvert Drop Distance (ft)	Crossing Length (ft)	Bankfull %	AOP Status	2 YR Return Interval	10 YR Return Interval	25 YR Return Interval	50 YR Return Interval	100 YR Return Interval
Barnard Brook	EL_BABK_01	Culvert	Rusted	1	3	Cascade	1.7	31		GRAY	FAIL	FAIL	FAIL	FAIL	FAIL
Barnard Brook	EL_BABK_03	Culvert	Old	2.4	3.5	At Grade	0	38	17.2	GRAY	FAIL	FAIL	FAIL	FAIL	FAIL
Barnard Brook	EL_BABK_06	Culvert	Old	3	8	Free Fall	5.4	58	18.8	RED	PASS	FAIL	FAIL	FAIL	FAIL
Barnard Brook	EL_BABK_07	Culvert	New	6	3	At Grade	0	44	25.9	GRAY	PASS	PASS	PASS	PASS	PASS
Breed Brook	EL_BRBK_01	Culvert	New	2	3.7	Free Fall	0.7	31	16.6	RED	FAIL	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_02	Culvert	Eroding	4	2	Free Fall	0.4	60	43.2	RED	PASS	Transitional	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_03	Culvert	Old	3	1	At Grade	0	30	21.1	GRAY	PASS	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_04	Culvert	New	2	3	Free Fall	0.4	33	17.8	RED	-	-	-	-	·
Breed Brook	EL_BRBK_06	Culvert	Collapsing	2	2.5	At Grade	0	66.5	17.4	GRAY	FAIL	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_07	Culvert	Old	3	1	Free Fall	0.9	34	13.5	RED	PASS	PASS	PASS	PASS	Transitional
Breed Brook	EL_BRBK_08	Culvert	New	4	1	Free Fall	0.8	51		RED	PASS	PASS	PASS	PASS	PASS
Breed Brook	EL_BRBK_09	Culvert	Old	1.3	2	At Grade	0	45		GRAY	FAIL	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_10	Arch	New	7	5.8	At Grade	0	63		GRAY	PASS	PASS	PASS	PASS	PASS
Breed Brook	E1_BRBK_11	Culvert	Old	3	4	Free Fall	0.6	38	25.5	ORANGE	PASS	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_12	Culvert	New	8	2.6	Free Fall	0.2	30		ORANGE	PASS	PASS	PASS	PASS	PASS
Breed Brook	EL_BRBK_13	Culvert	rusted	1.5	3	At Grade	0	51	6.1	GRAY	FAIL	FAIL	FAIL	FAIL	FAIL
Breed Brook	EL_BRBK_14	Culvert	New	2.4	3	Cascade	0.4	59.5	22.4	GRAY	Transitiona	FAIL	FAIL	FAIL	FAIL
Choate Brook	EL_CHBK_01	Culvert	New	1.3	4.5	At Grade	0	31	6.7	GRAY	FAIL	FAIL	FAIL	FAIL	FAIL



Statistical Results



50 YR Return Interval - Hydraulic Capacity

100 YR Return Interval - Hydraulic Capacity

Developing Restoration Strategies

Set up a method for replacement prioritization:

- Can Tailor to town interests (dams, road banks, private lands, emergency services)
- Prioritization tool being developed now that takes into account AOP, geomorphic and hydraulics

Future Assessments

> Can be transferred and used to other basins within NH

- Cost savings realized
- Requirements to run model
 - Field data; GIS and MS Excel capabilities

Take Home Messages

- Undersized stream crossings can impact the ecosystem, municipal infrastructure and public safety (flooding, storm damage, etc.)
- This is a screening tool; additional engineering will be required
- Communities can use results to develop a restoration prioritization
- This model/methodology can be used in other basins

Questions?

Gabe Bolin, PE Eastern Stream Restoration Specialist Trout Unlimited (603) 809-6101

Backup Slides

Project Background

Special Transportation Project Funding provided by FHA through NH DOT to SNHPC

Data already collected from Culvert Assessment AOP (Phase I) and Fluvial Erosion Hazard studies

Public Benefit: Increased knowledge/information to help communities avoid future flooding and storm related damage...

AOP Model Output – Francestown

Town	Road Name	Stream Name	Crossing ID	Structure Type	Latitude	Longitude	0	Structure Width (ft)	Crossing Slope	Culvert Invert Type	Culvert Drop Distance (ft)	Crossing Length (ft)	BANKFUL %	AOP Status
FRANCESTOWN	Mountain Rd	Dinsmore Brook	RB_DIBK_02	Culvert	43.00685	-71.86592	Old	3	3	Free Fall	0.3	46	37.7	RED
FRANCESTOWN	Mountain Rd	Dinsmore Brook	RB_DIBK_12	Culvert	43.00687	-71.85191	Old	2	7	Free Fall	0.4	33	20.2	RED
FRANCESTOWN	Muzzey Rd	Piscataquog	RB_SBPR_13	Culvert	42.98067	-71.82662	Old	3	0.7	At Grade	0	25	18.4	GRAY
FRANCESTOWN	Muzzey Rd	Piscataquog	RB_SBPR_08	Culvert	42.97791	-71.84844	New	1.5	4	At Grade	0	16	37.3	GRAY
FRANCESTOWN	no name	Dinsmore Brook	RB_DIBK_01	Culvert	43.0034	-71.86424	New	2	6	Free Fall	0.3	200		RED
FRANCESTOWN	no name	Dinsmore Brook	RB_DIBK_09	Culvert	43.01932	-71.86644	Old	3.5	2.5	Free Fall	0.6	41	27.3	RED
FRANCESTOWN	Old County	collins Brook	RB_COBK_05	Culvert	43.01222	-71.02998	Old	12.5		Cascade	0.2		111.6	GRAY
FRANCESTOWN	Old County	Piscataquog	RB_SBPR_19	Bridge	42.96931	-71.79913	New	23	7.5	At Grade	0	21		GRAY
FRANCESTOWN	Old County	Collins Brook	RB_COBK_01	Culvert	43.02618	-71.84238	New	3.5	0.1	At Grade	0	32	24.9	GRAY
FRANCESTOWN	Old Turnpike Rd	collins Brook	RB_COBK_02	Culvert	43.00921	-71.84273	New	2	3	Free Fall	1	20	33.6	RED
FRANCESTOWN	Pleasant Pond Rd	Collins Brook	RB_COBK_06	Bridge	43.01689	-71.82214	New	22	0.1	At Grade	0	30	68.4	GRAY
FRANCESTOWN	Poor Farm	Piscataquog	RB_SBPR_04	Culvert	42.98944	-71.81088	New	3	3	Free Fall	0.3	39	12.0	RED
FRANCESTOWN	red house rd	Whiting Brook	MB_WTBK_05	Culvert	42.98101	-71.78222	New	4	0.5	At Grade	0	40		GRAY
FRANCESTOWN	Reid RD	Piscataquog	RB_SBPR_11	Culvert	42.9756	-71.83067	New	5.8	0.5	Free Fall	0.8	48	26.5	RED
FRANCESTOWN	Rte 136	Whiting Brook	MB_WTBK_06	Arch	42.98813	-71.77956	Old	4	2	At Grade	0	39	22.7	GRAY
FRANCESTOWN	Rte 136	Whiting Brook	MB_WTBK_07	Bridge	42.98947	-71.77778	Old	11	2	At Grade	0	32.5	57.1	GRAY
FRANCESTOWN	Rte 136	Whiting Brook	MB_WTBK_04	Culvert	42.98493	-71.79176	Old	4	2	At Grade	0	33	30.8	GRAY
FRANCESTOWN	Rte 136	Whiting Brook	MB_WTBK_09	Culvert	42.99869	-71.76316	Old	1.5	2	Free Fall	0.3	48		ORANGE
FRANCESTOWN	Russell Station	Rand Brook	RB_RBBK_12	Bridge	42.95916	-71.79565	New	28	7.1	At Grade	0	19	83.2	GRAY
FRANCESTOWN	Russell Station	Rand Brook	RB_RBBK_15	Bridge	42.95665	-71.78388	New	44.8	5.5	At Grade	0	29	111.1	GRAY
FRANCESTOWN	Russell Station	Rand Brook	RB_RBBK_16	Culvert	42.95677	-71.7821	Old	1.6	1.5	ıt grade #2Free	0.4	40	21.1	GRAY
FRANCESTOWN	S New boston Rd	Piscataquog	SB_PSCR_06	Culvert	42.96164	-71.75154	Old	2.5	0.9	At Grade	0	40.8	8.9	GRAY
FRANCESTOWN	School House Rd	Dinsmore Brook	RB_DIBK_07	Culvert	43.01364	-71.86279	New	5	3.5	At Grade	0	51	52.4	GRAY
FRANCESTOWN	scobie rd	Whiting Brook	MB_WTBK_11	Culvert	42.98883	-71.75933	Rusted	7.5	3	Free Fall	0.5	29.5	58.0	ORANGE
FRANCESTOWN	scobie rd	Whiting Brook	MB_WTBK_10	Culvert	42.98905	-71.76131	Old	1.3	0.4	At Grade	0	30		GREEN
FRANCESTOWN	Spencer	Piscataquog	RB_SBPR_14	Arch	42.9804	-71.82675	Old	2.8	4.5	At Grade	0	16	19.1	GRAY
FRANCESTOWN	town line	rand brook	RB_RBBK_02	Bridge	42.96941	-71.85485	Old	3	4	At Grade	0	14		GRAY
FRANCESTOWN	Udall Rd	Piscataquog	RB_SBPR_09	Culvert	42.97305	-71.84357	Rusted	2	1.2	Free Fall	0.3	30		ORANGE
FRANCESTOWN	Woodward Hill	Piscataquog	RB_SBPR_20	Culvert	42.96936	-71.78903	Rusted	12.5	2	At Grade	0	32	46.7	GRAY

We need to focus on keeping the "Ecosystem" in balance to reduce its vulnerability!

- Improve habitat connectivity
- Allow access to large number of stream miles
- Focus on species diversity & productivity

Hydrology

- SCS Method
 - Components
 - Applicable Range
- > Regional Regression
- > Equations
 - Components
 - Applicable Range
- Limitations

Hydraulics

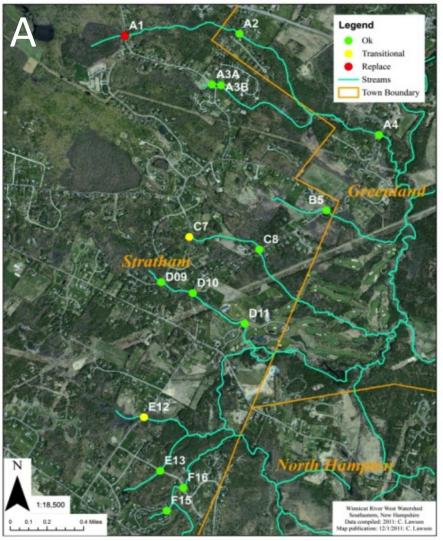
- > USDOT's FHWA's HDS-5 Method
 - Headwater Control
 - Inlet
 - Outlet
 - Applicable Equations
 - Unsubmerged
 - Submerged
 - **Regression Equations**
 - Limitations

Community Based Assessment Tool

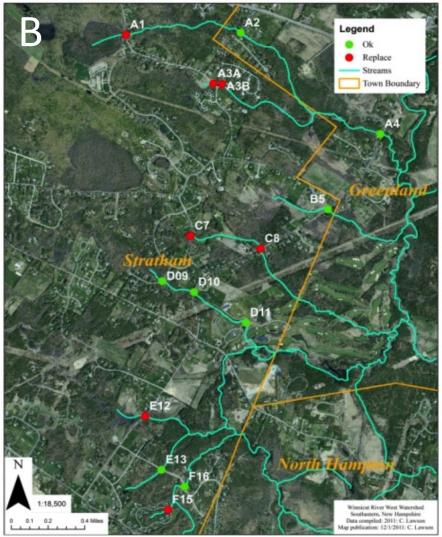
Requirements to run model

- GIS and MS Excel capabilities
- Field staff to collect culvert assessment field data
- > Options communities have to run model
 - Town has GIS and field staff, can do everything in-house
 - Town doesn't have GIS/field staff, contract through RPC or consultant
- > Materials/documents from this study are available free
- > Can contract with TU, RPC or consultant

Developing Restoration Strategies


> Once a community sets a replacement prioritization, set strategies for:

- Funding
- Higher level assessment and design (town engineer, road agent, consulting engineer)
- Permitting
- Construction mechanism (contractor, public works department, etc.)
- Volunteers/PW involvement/community and watershed organization



Model Graphical Ouput

2 Year / 24 Hour Storm Event - Baseline Flow Conditions - 2.6 Inches Rainfall

25 Year / 24 Hour Storm Event - Baseline Flow Conditions - 5.4 Inches Rainfall

