Built Environment: Resilient Water Features

Presenter: Dr. Robert Roseen Waterstone Engineering

Presenter: Dr. David Burdick University of New Hampshire

Weathering Change: Local Solutions for Strong Communities

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

www.communityresilience-center.org

Strengthen communities to prepare, respond and recover in the face of climate impacts and other disruptions through collaborative, innovative solutions.

Abigail Abrash Walton, Co-Director

ADD ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

Climate Resilience Certificate for Professionals

Antioch University New England's Center for Climate Preparedness, in conjunction with Antioch's Sustainable Development and Climate Change graduate program, has initiated a set of six on-line courses leading to an accredited Climate Resilience Certificate for Professionals.

- Engage in each course for 4 weeks.
- Courses can be taken either for graduate credit or for professional continuing education credits.
- Increase your skill set in climate resilience for better outcomes.
- Discover solutions to local issues you face on the job or in your community.
- Register for one course or the whole series.

Visit our website for more information about this series and the certificate program.

http://www.communityresilience-center.org/climate-change-resilience-series/

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

Climate Impacts: Vulnerability and Adaptation Planning

Dates: February 3 – March 2, 2019 *Registration deadline: January 29, 2019*

Local and regional governments are leaders in climate change due to their unique position to make a wide range of decisions that can mitigate and adapt to our changing climate. Because they are on the frontline, many communities have conducted vulnerability assessments and engaged in adaptation planning.

This module will enable participants to assess impacts to a business, community, or sector based on specific climate projections for a specific locale. This focuses on identifying what and who are most vulnerable to such impacts, which requires the ability to facilitate a stakeholder process to prioritize these identified vulnerabilities, including with respect to business supply chains, and actionable responses. This module will also provide you with the overview of planning for resiliency and adaptation at different scales.

Instructor: Christa Daniels, Ph.D.

Register for this course: <u>http://www.communityresilience-</u> <u>center.org/climate-change-resilience-series/</u>

www.toolkit.climate.gov

Ned Gardiner, Engagement Manger Meet the challenges of a changing climate by finding information and tools to help you understand and address your climate risks.

Logistics

•If you can hear me, you are already connected to the Broadcast and do not need to call in.

•If you have a question, please write it in the Q&A section (not Chat) and select to All Panelists, so we can see the questions.

•If you are having technical difficulty, please use Chat and send to Host, so we can address the issue with you directly.

•The presentation will be recorded and posted to the Antioch website within a week: <u>www.communityresilience-center.org</u>

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

Questions

- Please submit questions via the Q&A section (not Chat)
- Select to All Panelists.
- If we are not able to get to your question today, we will try to address it after the webinar in our general follow up email or you may hear directly from the presenters.

Built Environment: Resilient Water Features

Weathering Change: Local Solutions for Strong Communities

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

Green Infrastructure and Flood Resiliency-Land Use Management as an Adaptation Strategy in the Built Environment: Exeter Resilience Project

Resilient Water Features

Weathering Change: Local Solutions for Strong Communities 2018-19 Webinar Series January 24, 2019

Robert Roseen, PE, PHD

(603) 686-2488(c) rroseen@waterstone-eng.com

Julie LaBranche, Senior Planner

(603) 778-0885 <u>www.rpc-nh.org</u>

Exeter Resilience Project: Innovative Approaches to Stormwater Management, Communications, Policy

OVERVIEW

- Innovative Communication Methods
- Climate Adaptation Policy
- ✓ Resilient Stormwater Management

Support for this project was provided by the National Oceanic and Atmospheric Administration Office for Coastal Management pursuant to the Coastal Zone Management Act of 1972 in conjunction with the NH Department of Environmental Services Coastal Program, as a FY2016 Project of Special Merit Grant, Award # NA16NOS4190157.

Innovative Communications

Educational installation at Main Street and Lincoln Street Elementary Schools Reaches students Kindergarten through grade 5, yearly reinforcement, workbooks

Water Cycle, Flooding Surface interactions Natural Wetlands Constructed Wetlands Porous Pavement Stormwater Management

EXETER STORMWATER RESILIENCE LINCOLN STREET PHASE II PROJECT

Project Summary and Goals

1	Achieve municipal capacity building around planning for climate	
	themetic memoripan capacity particular provide pranting for camaric	Paciliant Groon Infractructure
	change and flood events	Resilient Green Initiastructure

20.00

- 2. Implement public outreach and communication to build support for Climate Adaptation Policy and understanding of adaptation planning including economic considerations.
- 3. Advance green infrastructure and other effective means of Innovative Messaging adaptation implementation for flood damage avoidance and water quality improvements

Watershed Assessment, Flood Analysis, and Adaptation with Green Infrastructure

- 1. The total annual nitrogen load from the entire Lincoln
- Street watershed is 1,265 pounds 2. Installation of BMPs 1, 2, 3, 4, 5, 7, 8 and 9 is expected to reduce this load by 691 pounds annually, a 76%
- 3. The 8MP unit cost perfo ranged from \$498 - \$5,080
- is estimated to be \$1,200 f \$3 mg/L
- Flood redu 10-YR storm and 50% for 9.21 ft of storm surge.
- These activities address NH Small MS4 General P
- nitrogen source identif optimization and pri

- 1. New Hampshire coastal communities have experienced rising populations resulting in an increase in development in nitrogen pollution and flooding
- from impervious surfaces. 2. Green infrastructure is an effective method to both improve water quality and avoid stormwater related flood damages.
- 3. The use of green infrastructure supports other economic and quality of life benefits such as creation of attractive public spaces, and landscaping that supports walkable communities. 4. This project developed construction-ready designs for inclusion in future

Performance of Stormwater Retrofits

capital improvement projects in Exeter's largest subwatershed.

- 1. The total annual nitrogen load from the 179-acre Lincoln Street watershed is 1,265 pounds.
- The project Exeter Resilience project identified green infrastructure retrofit opportunities for 14 stormwater installations expected to reduce nitrogen load by 691 pounds annually, a 76% reduction
- Retrofit unit costs averaged \$1,000 and ranged from \$498-\$5,080 per pound of nitrogen in comparison with \$1,200 for the new wastewater facility The estimated cost to implement green infrastructure

Photo: Flooding at Exeter Town Landing March 2018 Nor easter

Green Infrastructure and Climate Adaptation

1. New Hampshire coastal communities have experienced

- rising populations resulting in an increase in Impervious surfaces, stormwater runoff, and associated flooding.
- At the same time, communities are faced with a changing climate including extreme rainfall events and sea-level rise
- Green infrastructure is an important form of climate adaptation which can have significant economic benefits for
- flood damage avoidance. The Exeter Resilience project conducted a cost impact
- analysis to evaluate the potential for flood damage avoidance with implementation of green infrastructure

Flood Damage Avoidance

The cost impact analysis graphic at right shows the potentia for flood damage avoidance with implementation of green Infrastructure. The estimated flood loss from a current 10-year storm is 11 million or \$3.43 million with green infrastructure, a

- % reduction e total estimated cost to implement green infrastructure 14 sites is \$689,000. e greatest benefit is from small sized Best Management
- tices that provide water quality and flood protection r a 0.5" storm, the most frequent annual rainfall event.

--

Ø

Green Infrastructure Flood Reduction

Damage in \$ Millions for 10-YR 24 Hour Storm

eline Flooding vs. 0.5* WQV BMP

EXETER STORMWATER RESILIENCE FLOOD REDUCTION FROM GREEN INFRASTRUCTURE

Flood Reduction from Green Infrastructure

- 1. New Hampshire coastal communities have experienced rising populations resulting in an increase in development in nitrogen pollution and flooding from increased impervious surfaces and increased stormwater runoff.
- 2. At the same time, communities are faced with a changing climate, including increased extreme rainfall events and sea-level rise.
- 3. Green infrastructure is an important method to both improve water quality and avoid flood related damages
- 4. Flood reductions from green infrastructure implementation are estimated at 60% for the current 10-year storm
- and 50% for the projected year 2040 storm event with 9.21 feet of storm surge. 5. The figure below shows the modeled flood impact with and without green infrastructure for the projected year 2040 rainfall and storm conditions with and without water quality volume best management practices

Addate Storm Eventilis addresses

4 + Prepared BAIP EXETER STORMWATER RESILIENCE LINCOLN STREET PHASE II PROJECT 8 and and a R

10.00

WATERSTONE

Climate Adaptation Policy

Innovative Messaging

Project Summary and Goals

- 1. Achieve municipal capacity building around planning for climate change and flood events.
- Resilient Green Infrastructure 2. Implement public outreach and communication to build support for and
- understanding of adaptation planning including economic considerations 3. Advance green infrastructure and other effective means of adaptation
- implementation for flood damage avoidance and water quality improvements

Exeter Climate Adaptation Policy (draft)

The purpose of a Climate Adaptation Policy (CAP) is to guide local decision making and investment in climate adaptation and implementation actions. The CAP is supported by statements in the Vision section of the Master Plan (draft 2017) which states that local government will protect the welfare of residents and continue to provide suppor that helps prepare for a changing climate. Elsewhere in the Master Plan, responses to changes in climate and its impacts are detailed in the Support, Steward and Prepare sections as well as in the Action Agenda.

VISION FOR THE FUTURE "Proactive strategies are identified and implemented that address the impacts of climate change to create a more sustainable and resilient community."

CLIMATE ADAPTATION POLICY PRINCIPCLES. IMPLEMENTATION ACTIONS -FOCUS AREAS Ensure the community is better prepared to protect the security, health and safety of its citizens. - Municipal Policy and Actions Protect natural resources from the impacts of flooding from sea-level rise - Management and Investment and storm events Environment-Natural Resources Provide for a stable and viable economic future. - Regulatory and Land Use Minimize the future costs of infrastructure replacement and maintenance. Planning

Support installations of green infrastructure, renewable energy systems and - Community-Based electric vehicle charging stations.

Rockingham Planning Commission

4543

Rain Garder Tree Filte

K

2

Exeter Resilience Project: Innovative Approaches to Stormwater Management, Communications, Policy

Climate Adaptation Policy (draft)

Recipe for Process/Methods

- ✓ Supported by Master Plan
- ✓ Audit of Zoning and Regulations
- ✓ Community Initiatives and Activities
- Capital Improvement/Infrastructure
 Management Plans
- Coordination with elected officials, staff, boards, commissions
- Exeter "Climate Proclamation" (to uphold principles of Paris Climate Accord)

Overview

- 1. Watershed Modeling
- 2. Identify Green Infrastructure Retrofit Locations
- 3. Project Design
- 4. Nutrient and Flooding Reduction

HAZUS Damage Costing

WATERSHED CHARACTERISTICS

179 acres with 41% impervious cover 1,265 lbs of nitrogen annually

27" storm drain underneath PEA

Manhole Drainage Areas

Catch Basin Drainage Areas

- Disconnected
- 0 38 acres
- 38 82 acres
- 82 178 acres

- Disconnected
- 0 38 acres
- 38 82 acres
- 82 178 acres

- Sewershed Drainage Areas
- < 6 acres
- 6 16 acres
- 16 38 acres
- 38 82 acres
 - 82 178 acres

1,000

PEA BOATHOUSE

STORMWATER RETROFIT OPPORTUNITIES

- Annual Nitrogen from the 179-acre watershed = 1,265 lbs.
- 14 identified green infrastructure retrofit opportunities
- BMPs to reduce Nitrogen by 76% or 691 pounds annually.
- Retrofit unit costs averaged \$1,000 and ranged from \$498 -\$5,080 per pound of Nitrogen in comparison with \$1,200 for the new wastewater facility
- Estimated cost to implement GI retrofits = \$689,000.

Rain Garden

Tree Filter

FLOOD REDUCTION FROM GREEN INFRASTRUCTURE

Modeled Flood Impacts

for 2018, and 2040 With and Without Green Infrastructure

- Flood reduction by GI = 60% for 10-year storm, current
- Flood reduction by GI = 50% for the 10-year storm in 2040 with 9.21 feet of storm surge.

FLOODING AND NITROGEN LOAD REDUCTION – LINCOLN ST

FLOODING AND NITROGEN LOAD REDUCTION – ELM ST, FRONT ST & TAN LANE

HAZUS Analysis and Damage Cost Avoidance

Total Economic Loss (1 dot = \$300K) Overview Map

ECONOMIC BENEFITS OF FLOOD AVOIDANCE

Photo: Flooding at Exeter Town Landing March 2018 Nor'easter

- 1.The estimated flood loss from a current 10year storm is \$6.11 million or \$3.43 million with green infrastructure, a 51% reduction.
- 2.The total estimated cost to implement green infrastructure at 14 sites is \$689,000.
- 3.This benefit is from small sized Best Management Practices that provide water quality and flood protection for a 0.5" storm, the most frequent annual rainfall event.

Economic Impact Analysis of Flood Damage Avoidance With Implementation Of Green Infrastructure

SUBSURFACE INFILTRATION

NV. 28.10

12" PERF. HDPE

20 MIL UNER

Infiltration Examples

NOT TO SCALE

BIOSWALE WITH PRETX CATCHBASINS

INFILTRATION TRENCH WITH PRETX CATCHBASINS

RIGHT-OF-WAY INFILTRATION

- SHALLOW DEPTH GRASSED
 BIOSWALES ARE EASY TO MAINTAIN
- CAN BE LOCATED EASILY WITHIN EXISTING RIGHT-OF-WAY
- CONNECTED TO EXISTING DRAINAGE
 INFRASTRUCTURE
- RELATIVELY LOW COST

POTENTIAL APPLICATIONS

TREE PLANTERS

Flood Control Applications

Low Maintenance Asset Management With Pretreatment

- In urban environments return on investment may be 1-2 years
- Goal is to use existing staff, equipment for standard catch basin cleaning
- Land-use and trash and debris load
- Aesthetics
- Cost to maintain versus cost of pretreatment

Condition Shortly After Install

Anderson Street Bioswale

Condition After Winter

SOURCE: NYC OFFICE OF GREEN INFRASTRUCTURE

Table 7: Engineering Cost Estimates for BMPs 1, 2, 3, 4, 5, 7, 8 and 9

LOCATION	BMP #	DRAINAGE AREA (ACRES)	ANNUAL TN REDUCTION (LBS)	% LOAD REDUCTION	95% DESIGN COST ESTIMATE	\$/LBS NITROGEN
WINTER STREET	1	12.9	68.2	76%	\$45,900	\$680
	2	24.6	120.2	76%	\$79,000	\$660
Subtotal	-	37.4	188.4	76%	\$124,900	-
	3.1	0.2	2.0	80%	\$8,000	\$4,000
	3.2	0.1	1.3	76%	\$6,600	\$5,080
	3.3	0.3	2.6	77%	\$12,000	\$4,620
LINCOLN STREET	3.4	0.2	2.2	77%	\$9,900	\$4,500
NORTH	3.5	0.2	1.8	75%	\$7,000	\$3,890
	3.6	0.8	5.7	79%	\$21,800	\$3,830
	3.8	1.2	7.1	78%	\$22,000	\$3,100
	3.9	0.7	4.2	75%	\$13,600	\$3,240
	3.22	0.2	1.0	77%	\$3,000	\$3,000
Subtotal	-	3.9	27.9	77%	\$103,900	-
LINCOLN STREET	3.20	1.6	10.7	77%	\$33,000	\$3,090
SOUTH	3.21	0.2	1.0	72%	\$2,800	\$2,800
Subtotal	-	1.8	11.7	76%	\$35,800	-
FRONT STREET	5	20.3	71.7	52%	\$45,200	\$640
	4	32.43	230	90%	\$259,900	\$1,130
PHASE 2	7	7.41	7	12%	\$33,100	\$4,560
	8	15.99	107	99%	\$53,500	\$500
	9	5.86	47	99%	\$33,600	\$700
Subtotal	-	61.7	391	83%	\$380,000	\$970
Total	-	125	691	76%	\$689,825	-

1.The estimated flood loss from a current 10-year storm is \$6.11 million or \$3.43 million with green infrastructure, a 51% reduction.

2. The total estimated cost to implement green infrastructure at 14 sites is \$689,000.

Exeter Resilience Project: Innovative Approaches to Stormwater Management, Communications, Policy

Thank you!

Robert M. Roseen, PE

(603) 686-2488(c) rroseen@waterstone-eng.com

Julie LaBranche, Senior Planner

(603) 778-0885 www.rpc-nh.org

http://www.rpc-nh.org/regional-community-planning/climate-change/exeter-resilience

Living Shorelines in Coastal New Hampshire

Tom Ballestero, Civil & Environmental Engineering David Burdick, Jackson Estuarine Lab Gregg Moore, Jackson Estuarine Lab University of New Hampshire

University of New Hampshire

- Coastal Risk Factors
 - Why do coasts need protecting?
- Living Shorelines defined
 - Some details of salt marshes
- Regional Efforts to Use Living Shorelines
- Case Studies
- Conclusions

Coastal Risk Factors

Why do coasts need protection?

- Sea Level
- Surge
- Waves

Will Brown, 2017

How Can Living Shorelines Help?

- Longer distance of energy loss flatter slope
- Vegetation
 - Dissipates wave/surge energy
 - Small wave height reduced 63% by 7 m marsh width (Morgan et al. 2009)
 - Provides habitat

Eroding Shore / Traditional Protection

Living Shoreline Protection

Living Shorelines Weined at are LIVIng Shorelines?

A combination of artificial and natural components supported by dynamic physical and biological processes to promote healthy, stabilized shorelines.

Breaking the erosion cycle: Erosive forces hit resistant material at steeper slopes Erodible, vegetated material at low slopes

Living Shorelines Project at the Edenhouse Boat Ramp, Edenton, NC; ©Tracy Skrabal

Living Shorelines Defined

Living Shorelines

LIVING SHORELINE EXAMPLES FOR COASTAL COMMUNITIES

MATERIALS: native submerged or terrestrial plants; coir fiber logs; sediment fill

SUITABLE LOCATIONS: sheltered coasts; low wind and low wave energy environments

PROS: most natural approach; least impact to adjacent properties; provides habitat

CONS: unsuitable in high energy environments

FIBROUS SILL

MATERIALS: native plants; coir fiber logs; sediment fill

SUITABLE LOCATIONS: low to moderate wave energy environments

PROS: protects marsh; biodegradable; can reduce slopes; provides habitat

CONS: does not last as long as a rock sill; possible habitat conversion

ROCK SILL

low marsh

high mars

MATERIALS: native plants; stone, rubble, or fibrous toe protection; sediment fill

SUITABLE LOCATIONS: shallow depths; low boat wake; low to moderate

wave energy environments

PROS: protects marsh; maintains tidal flushing; provides habitat

CONS: not biodegradable; can restrict navigation; possible adjacent erosion; possible habitat conversion

LIVE CRIB WALL

upland vegetation

MATERIALS: timber, box-like structure filled with soil or rock and live tree branches

SUITABLE LOCATIONS: urbanized shorelines; higher wind and wave energy; mostly freshwater

PROS: highest level of erosion management

CONS: may cause more adjacent erosion; less marsh habitat value

Illustration: Liz Podowski King. Original content: Carolyn LaBarbiera and Liz Podowski King with support from the New York Department of State. Adapted for use by the NHDES Coastal Program.

Regional Efforts

Regional Efforts

- State of the Practice
 - The Nature Conservancy, Woods Hole Group, NH Coastal Program, UNH, ME Coastal Survey and others
- New Project- All NE States:
 - Define the range of Living Shorelines
 - Implement Several Pilot Projects
 - Identify New England Issues
 - Monitoring Protocols
- Site Suitability Model for Living Shorelines in New Hampshire
 - NOAA Fellow Vidya Balasubramanyam

for People + Nature

Challenges of northern shoreline projects

- Low light
- Short growing season
- Large tidal range
- Ice

Regional Efforts

Local Living Shoreline Projects

Technicians and Students

University of New Hampshire COASTAL HABITAT RESTORATION

University of New Hampshire

NH

(JTC)

Somersworth

The Case for Building Salt Marshes into Living Shorelines

- Salt marshes are among our most productive and valuable ecosystems
- Loss of 30% of historical salt marshes
- Future for marshes is not bright SLR/CC
- Created marshes erode EVEN if shoreline protected
 - 1993 salt marsh creation lost 20% of area in five years in North Mill Pond
- Salt marshes protect, survive and heal following storms
 - Gittman et al. 2014

Regional Efforts

Design Marsh with Plant Zones

Ranges of Options

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

VEGETATION ONLY -Provides a buffer to upland areas and breaks small waves, Suitable for low wave energy environments.

EDGING -Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas except high wave energy environments.

SILLS -Parallel to vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment hardened shoreline accretion. Suitable for most areas.

Coastal Structures

REVETMENT -Lays over the slope of the shoreline and protects it from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy settings and sites with existing hard shoreline structures.

Guidance for Considering Use of Living Shorelines, NOAA 2015

VEGETATION ONLY

SAGE, 2016, Natural and structural measures for shoreline stabilization

Mill Pond Way berm removal, 2010 North Mill Pond, Portsmouth, NH

Brewster Street Mitigation on North Mill Pond (Stantec)

Portsmouth, NH North Mill Pond at Brewster St. Mitigation Implemented in 2016

Pre-existing conditions

Fill to Designs Grades

Plant With Plugs . . .

and boulders to break up ice

Final Product

Marsh built in South Mill Pond 2001, Portsmouth, in front of seawall and behind sill constructed from existing rocks on site.

SAGE, 2016, Natural and structural measures for shoreline stabilization

Case Study: Living Shoreline Marsh with Sill

- 1) Cutts Cove Portsmouth
 - Designed as restoration of salt marsh
 - Approach is to partially remove rip-rap wall
 - Sill provides a 'climate ready' feature for 2060

Tides and existing marshes in Cutts Cove

Cutts Cove Profiles and Ecosystems

Distance from mudflat (ft)

Tides and existing marshes in Cutts Cove

Construction Sequence

Clear and Grub Flatten rip-rap wall and build stone edge

Construction Sequence

Clear and Grub Flatten rip-rap wall and build stone edge Backfill with sandy silt to elevation

Planting and Maintenance

Measures of Success

- Monitoring
 - Erosion
 - Plant establishment and growth
 - Animal use of habitat

Conclusions

- Recognize limited growing season
- Difficulty increases with tidal range and physical exposure to shear stress from waves *and ice*
- Be prepared to irrigate
- Be aware of conditions that can reduce success: shade & animals (geese, crabs, snails, people)
- Consider management (including people management) at the landscape scale

Questions

- Please submit questions via the Q&A section (not Chat)
- Select to All Panelists.
- If we are not able to get to your question today, we will try to address it after the webinar in our general follow up email or you may hear directly from the presenters.

U.S. Climate

Resilience

AU ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience Join us again in February for:

Innovative Engagement Strategies Thursday, February 21, 2019 12:00-1:15 PM EST

Struggling to engage stakeholders in outreach events? This session will cover innovative, emergent practices to engage the community. Through best practices and lesson learned, participants will learn the basics of developing an effective climate engagement strategy for their target audiences. This session will cover:

- Tips on developing values based framing;
- Examples of community engagement approaches
- Common communication challenges and how to overcome these challenges based on translated and applied social science research.

Presenter: Cara Pike, MS Climate Access

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

Thank You

Please take the time to fill out the short evaluation for this webinar so we can continue to bring you topics that are most useful for you. An evaluation link has already been emailed to you.

The 2018-19 Webinar Series is generously sponsored by:

The High Meadows Fund

ANTIOCH UNIVERSITY NEW ENGLAND Center for Climate Preparedness and Community Resilience

